Lecture 5
 Resistive wall wake

January 24, 2019

Lecture outline

- Skin effect and the Leontovich boundary condition.
- Parameter s_{0} and the resistive wall wake.
- Longitudinal and transverse RW wake in the limit $s \gg s_{0}$.

Maxwell's equations in metal

To understand interaction of a beam with a metallic wall, we need to consider effects of finite conductivity, or resistive wall effect. We start with quick derivation of the so called skin effect.
The skin effect deals with the penetration of the electromagnetic field inside a conducting medium characterized by a conductivity σ and magnetic permeability μ. We neglect the displacement current $\partial \boldsymbol{D} / \partial t$ in Maxwell's equations in comparison with \boldsymbol{j} :

$$
\begin{equation*}
\nabla \times \boldsymbol{H}=\boldsymbol{j}, \quad \nabla \cdot \boldsymbol{B}=0, \quad \nabla \times \boldsymbol{E}+\frac{\partial \boldsymbol{B}}{\partial t}=0 \tag{5.1}
\end{equation*}
$$

where $\boldsymbol{B}=\mu \boldsymbol{H}$. In the metal we have the relation between the current and the electric field

$$
\begin{equation*}
\boldsymbol{j}=\sigma \boldsymbol{E} \tag{5.2}
\end{equation*}
$$

Combining all these equations, one finds the diffusion equation for the magnetic field B :

$$
\begin{equation*}
\frac{\partial \boldsymbol{B}}{\partial t}=\sigma^{-1} \mu^{-1} \nabla^{2} \boldsymbol{B} \tag{5.3}
\end{equation*}
$$

Skin effect

A metal occupies a semi-infinite volume $z>0$ with the vacuum at $z<0$. We assume that at the metal surface the x-component of magnetic field is given by $H_{x}=H_{0} e^{-i \omega t}$. Due to the continuity of the tangential components of \boldsymbol{H}, H_{x} is the same on both sides of the metal boundary, that is at $z=+0$ and $z=-0$.

Skin effect

Seek solution inside the metal in the form $H_{x}=h(z) e^{-i \omega t}$. Equation (5.3) then reduces to

$$
\frac{d^{2} h}{d z^{2}}+i \mu \sigma \omega h=0
$$

with the solution $h=H_{0} e^{i k z}$ and

$$
k=\sqrt{i \mu \sigma \omega}=(1+i) \sqrt{\frac{\mu \sigma \omega}{2}} \equiv \frac{1+i}{\delta}
$$

Note that we've chosen $\operatorname{Im} k>0$ so that the field exponentially decays into the metal. The quantity δ,

$$
\begin{equation*}
\delta=\sqrt{\frac{2}{\mu \sigma \omega}} \tag{5.4}
\end{equation*}
$$

is called the skin depth; it characterizes how deeply the electromagnetic field penetrates into the metal, $\left|H_{x}\right| \propto e^{-z / \delta}$.

Skin effect

In many cases, the magnetic properties of the metal can be neglected, then $\mu=\mu_{0}$

$$
\begin{equation*}
\delta=\sqrt{\frac{2 c}{Z_{0} \sigma \omega}} \tag{5.5}
\end{equation*}
$$

The electric field inside the metal has only y component; it can be found from the first and the last of Eqs. (5.1)

$$
\begin{equation*}
E_{y}=\frac{j_{y}}{\sigma}=\frac{1}{\sigma} \frac{d H_{x}}{d z}=\frac{i k}{\sigma} H_{x}=\frac{i-1}{\sigma \delta} H_{x} \tag{5.6}
\end{equation*}
$$

The mechanism that prevents penetration of the magnetic field deep inside the metal is a generation of a tangential electric field, through Faraday's law, that drives the current in the skin layer and shields the magnetic field.
In reality the metal has finite a thickness Δ : our results are valid for $\Delta \gg \delta$.

The Leontovich boundary condition

The relation (5.6) can be rewritten in vectorial notation:

$$
\begin{equation*}
\boldsymbol{E}_{t}=\zeta \boldsymbol{H} \times \boldsymbol{n} \tag{5.7}
\end{equation*}
$$

where \boldsymbol{n} is the unit vector normal to the surface and directed toward the metal, and

$$
\begin{equation*}
\zeta(\omega)=\frac{1-i}{\sigma \delta(\omega)} \tag{5.8}
\end{equation*}
$$

Eq. (5.7) is called the Leontovich boundary condition. Remember that ζ is a function of ω - it is only applicable to the Fourier representation of the field.

Perfectly conducting metal

In the limit $\sigma \rightarrow \infty$ we have $\delta \rightarrow 0$ and $\zeta \rightarrow 0$ and we recover the boundary condition (3.3) of the zero tangential electric field on the surface of a perfect conductor. One can also show that in this limit the normal magnetic field is zero on the surface of the metal ${ }^{15}$:

$$
\begin{equation*}
B_{n}=0 . \tag{5.9}
\end{equation*}
$$

The approximation of small δ is good for calculation of EM field of short bunches (rapidly varying fields). It is not valid for a constant current ($\omega=0$). When ω is small, the skin depth becomes much larger then the wall thickness t, $\delta \gg t$. The magnetic field penetrates through the metal, while the tangential component of the electric field is zero on the surface.

At large frequencies the conductivity begins to depend on frequency - the so called ac conductivity. At low temperatures there is an anomalous skin effect where (5.2) does not work.

[^0]
Round pipe with resistive walls

We need to solve Maxwell's equations using the Lentovich boundary conditions and to find the electric field $E_{z}(s)$ behind the source charge to calculate the longitudinal wake. The problem is easier solved in the Fourier representation where one calculates the longitudinal impedance $Z_{\ell}(\omega)$.

In this problem, there is an important parameter s_{0} in this problem which we now introduce using an order of magnitude estimate.

Parameter s_{0}

Consider a bunch of length σ_{z} with the peak current I propagating in the round pipe a. What is the magnetic field H_{θ} on the wall (this field defines E_{z} on the wall through the Leontovich boundary condition)? For a perfectly conducting wall this field will be the same as in vacuum (Ampere's law)

$$
\begin{equation*}
H_{\theta}=\frac{I}{2 \pi a} \tag{5.10}
\end{equation*}
$$

but the longitudinal electric field in the system changes the field through the Maxwell equation

$$
\nabla \times \boldsymbol{H}=\boldsymbol{j}+\frac{\partial \epsilon_{0} \boldsymbol{E}}{\partial t}
$$

which involves the displacement current in z direction $\partial \epsilon_{0} E_{z} / \partial t$. Let us estimate E_{z} from the boundary condition, $E_{z} \sim \zeta(\omega) H_{\theta}$. We estimate $\partial / \partial t \sim \omega \sim c / \sigma_{z}$. When we integrate j_{z} through the cross section of the pipe we get the current l. We now integrate $\partial \epsilon_{0} E_{z} / \partial t$ through the cross section:

$$
\sim a^{2} \frac{c}{\sigma_{z}} \epsilon_{0} \frac{1}{\sigma \delta} \frac{l}{a} \sim a \frac{c}{\sigma_{z}} \epsilon_{0} \frac{1}{\sigma \sqrt{\frac{2 c}{Z_{0} \sigma \omega}}} l \sim a \frac{c}{\sigma_{z}} \epsilon_{0} \frac{1}{\sigma \sqrt{\frac{2 \sigma_{z}}{Z_{0} \sigma}}} /
$$

This term is of the order if I when

Round pipe with resistive walls

$$
\sigma_{z} \sim \frac{a^{2 / 3}}{\left(Z_{0} \sigma\right)^{1 / 3}}
$$

Here comes the parameter

$$
\begin{equation*}
s_{0}=\left(\frac{2 a^{2}}{Z_{0} \sigma}\right)^{1 / 3} \tag{5.11}
\end{equation*}
$$

For $\sigma_{z} \gg s_{0}$ the magnetic field of the beam on the wall is very close to the vacuum one, Eq. (5.10). For $\sigma_{z} \lesssim s_{0}$ this field is suppressed by the displacement current. RW wake looks different for distances $s \gg s_{0}$ and $s \lesssim s_{0}$.
For $a=5 \mathrm{~cm}$

Metal	Copper	Aluminium	Stainless Steel
$s_{0}, \mu \mathrm{~m}$	60	70	240

Round pipe with resistive walls

A. Chao calculated the longitudinal impedance valid for $a \gg \delta$,

$$
\begin{equation*}
Z_{\ell}(\omega)=\frac{Z_{0} s_{0}}{2 \pi a^{2}}\left(\frac{i \operatorname{sgn}(\kappa)+1}{|\kappa|^{1 / 2}}-\frac{i \kappa}{2}\right)^{-1} \tag{5.12}
\end{equation*}
$$

where $k=\omega s_{0} / c$. Remarkably, this impedance depends only on the scaled frequency к. Making the Fourier transform of the impedance, one finds the wake per unit length ${ }^{16}$

$$
\begin{equation*}
w_{\ell}(s)=\frac{Z_{0} c}{4 \pi} \frac{16}{a^{2}}\left(\frac{1}{3} e^{-s / s_{0}} \cos \frac{\sqrt{3} s}{s_{0}}-\frac{\sqrt{2}}{\pi} \int_{0}^{\infty} \frac{d x x^{2}}{x^{6}+8} e^{-x^{2} s / s_{0}}\right), \quad s>0 \tag{5.13}
\end{equation*}
$$

[Prove that the integral of this wake is equal to zero.]

Field lines

Here $-s$ is the distance behind the point charge located at $s=0$ (courtesy of K. Bane). Note that the field changes sign 3 times and then remains accelerating at $-s \gtrsim 4.3$.

Longitudinal resistive wall wake

The wake at the origin,

$$
w_{\ell}(0)=\frac{Z_{0} c}{\pi a^{2}}
$$

does not depend on the conductivity!

Limit $s \gg s_{0}$ is

$$
\begin{equation*}
w_{\ell}=-\frac{c}{4 \pi^{3 / 2} a} \sqrt{\frac{Z_{0}}{\sigma s^{3}}} \tag{5.14}
\end{equation*}
$$

σ is the conductivity. Negative wake means acceleration of the trailing charge.
This limit corresponds to the approximation $\kappa \ll 1$ in the impedance,

$$
\begin{equation*}
Z_{\ell}(\omega)=\frac{Z_{0} s_{0}}{2 \pi a^{2}} \frac{|\kappa|^{1 / 2}}{i \operatorname{sgn}(\kappa)+1}=\frac{1}{4 \pi a}\left(\frac{2 Z_{0}|\omega|}{c \sigma}\right)^{1 / 2}(1-i \operatorname{sgn}(\omega)) \tag{5.15}
\end{equation*}
$$

Transverse resistive wall wake

Resistive wall transverse wake for $s \gg s_{0}$ is

$$
\begin{equation*}
\bar{w}_{t}=\frac{c}{\pi^{3 / 2} a^{3}} \sqrt{\frac{Z_{0}}{\sigma s}} \tag{5.16}
\end{equation*}
$$

For, $s_{0} \gtrsim s$ the wake is shown in the figure.
Slope at the origin

$$
\left.\frac{d \bar{w}_{t}}{d s}\right|_{s=0}=\frac{2 Z_{0} c}{\pi a^{4}}
$$

The transverse impedance in the limit $s \gg s_{0}$ is

$$
\begin{equation*}
Z_{t}(\omega)=\frac{1-i \operatorname{sgn}(\omega)}{2 \pi a^{3}} \sqrt{\frac{2 Z_{0} c}{\sigma|\omega|}} \tag{5.17}
\end{equation*}
$$

Universal values of the wake at the origin

We obtained the following results for the wake w_{ℓ} and the derivative $d \bar{w}_{t} / d s$ at the origin for the resistive wall:

$$
\begin{gather*}
w_{\ell}(0)=\frac{Z_{0} c}{\pi a^{2}} \\
\left.\frac{d \bar{w}_{t}}{d s}\right|_{s=0}=\frac{2 Z_{0} c}{\pi a^{4}} \tag{5.18}
\end{gather*}
$$

It turns out that these results are also valid in other situations: a metal wall covered by dielectric, a corrugated wall, a periodic sequence of round diaphragms (a model of RF structure) ${ }^{17}$. In all cases we talk about the limit $s \rightarrow 0$. However, the effective value of s_{0} is different for different problems.

[^1]
Resistive wall wake and a Gaussian bunch

As an example, let us calculate $\Delta \mathcal{E}_{\mathrm{av}}$ and $\Delta \mathcal{E}_{\mathrm{rms}}$ for the resistive wall wake given by Eq. (5.14) and a Gaussian distribution function,

$$
\begin{equation*}
\lambda(z)=\frac{1}{\sqrt{2 \pi} \sigma_{z}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right) \tag{5.19}
\end{equation*}
$$

where σ_{z} is the rms bunch length. Note that, since w_{ℓ} in Eq. (5.14) is the wake per unit length of the pipe, we need to multiply the final answer by the pipe length L.
We assume $\sigma_{z} \gg s_{0}$. A direct substitution of the wake Eq. (5.14) into Eq. (4.1) gives a divergent integral when $z^{\prime} \rightarrow z$. This divergence is caused by the singularity of Eq. (5.14) at $s=0$ where it is not valid, (remember that $s \gg s_{0}$).

Resistive wall wake and a Gaussian bunch

One way to fix this singularity is to use the correct expression for the wake at $s \lesssim s_{0}$. A simpler, although more formal, approach is to represent w_{ℓ} as a derivative of another function (see Eq. (3.5)), $w_{\ell}=V^{\prime}(s)$ with $V=\left(c / 2 \pi^{3 / 2} a\right) \sqrt{Z_{0} / \sigma s}$ for $s>0$, and $V=0$ for $s<0^{18}$. We then rewrite Eq. (4.1) as

$$
\begin{align*}
\Delta \mathcal{E}(z) & =-N e^{2} L \int_{-\infty}^{\infty} d z^{\prime} \lambda\left(z^{\prime}\right) \frac{d V\left(z^{\prime}-z\right)}{d z} \\
& =N e^{2} L \int_{z}^{\infty} d z^{\prime} \frac{d \lambda\left(z^{\prime}\right)}{d s} V\left(z^{\prime}-z\right) \\
& =\frac{N e^{2} L c \sqrt{Z_{0}}}{2^{3 / 2} \pi^{2} a \sigma_{z}^{3 / 2} \sigma^{1 / 2}} G\left(\frac{z}{\sigma_{z}}\right) \tag{5.20}
\end{align*}
$$

where the function $G(x)$ is

$$
G(x)=-\int_{x}^{\infty} \frac{y e^{-y^{2} / 2} d y}{\sqrt{y-x}}
$$

[^2]
Resistive wall wake and Gaussian bunch

Plot of the function $G\left(s / \sigma_{z}\right)$. The positive values of s correspond to the head of the bunch.

Particles lose energy in the head of the bunch $(s>0)$ and get accelerated in the tail $(s<0)$. On average, of course, the losses overcome the gain.

Resistive wall wake and Gaussian bunch

For the average energy loss one can find an analytical result:

$$
\begin{equation*}
\Delta \mathcal{E}_{\mathrm{a} v}=-\frac{\Gamma\left(\frac{3}{4}\right)}{2^{5 / 2} \pi^{2}} \frac{N e^{2} c \sqrt{Z_{0}} L}{a \sigma_{z}^{3 / 2} \sigma^{1 / 2}} \tag{5.21}
\end{equation*}
$$

Numerical integration of Eq. (5.20) shows that the energy spread generated by the resistive wake is approximately equal to ΔE_{av} :

$$
\begin{equation*}
\Delta \mathcal{E}_{\mathrm{rms}}=1.06\left|\Delta \mathcal{E}_{\mathrm{av}}\right| \tag{5.22}
\end{equation*}
$$

Calculation of the bunch wake for resistive wall

Do we make a mistake when calculate the energy loss $\Delta \mathcal{E}(z)$ using the wake in the limit $s \gg s_{0}$ and integrating by parts (see (5.20))? Is it better to use a more accurate wake valid for arbitrary s ?

Magenta $-\sigma_{z}=s_{0}$; black $-\sigma_{z}=2 s_{0}$; blue $-\sigma_{z}=3 s_{0}$; red - this limit $s \gg s_{0}$.

Longitudinal RW wake in a rectangular vacuum chamber

See derivations in ${ }^{19}$.

Consider a rectangular vacuum chamber with dimensions $2 a \times 2 b$. We consider the limit $s \gg s_{0}$,

$$
w_{\ell}=-F\left(\frac{b}{a}\right) \frac{c}{4 \pi^{3 / 2} b} \sqrt{\frac{Z_{0}}{\sigma s^{3}}}
$$

(5.23)

Transverse RW wake in a rectangular vacuum chamber

When all particles have the same offset, the wake is given by Eqs. (3.10)

$$
\begin{aligned}
& w_{y}(s, y)=\left[\bar{w}_{y}^{d}(s)+\bar{w}_{y}^{q}(s)\right] y \\
& w_{x}(s, x)=\left[\bar{w}_{x}^{d}(s)+\bar{w}_{x}^{q}(s)\right] x
\end{aligned}
$$

Again, we consider the limit $s \gg s_{0}$. Introduce

$$
u(s)=\frac{c}{\pi^{3 / 2} b^{3}} \sqrt{\frac{Z_{0}}{\sigma s}}
$$

(see Eq. (5.16)).

$$
\begin{aligned}
& w_{x}^{d}(s)=F_{d x}\left(\frac{b}{a}\right) u(s) \\
& w_{y}^{d}(s)=F_{d y}\left(\frac{b}{a}\right) u(s) \\
& w_{x}^{q}(s)=-w_{x}^{q}(s)=F_{q x}\left(\frac{b}{a}\right) u(s)
\end{aligned}
$$

Parallel plates limit:
$F_{d x}(0)=F_{q \times}(0)=\pi^{2} / 24$,
$F_{d y}(0)=\pi^{2} / 12$.

[^0]: ${ }^{15}$ It follows from Faraday's law of induction.

[^1]: ${ }^{17}$ A generalization for other cross sections can be found in: Baturin and Kanareykin, PRL 113, 214801 (2014).

[^2]: ${ }^{18}$ We should have $V(\infty)-V(-\infty)=0$ because the area under the wake is zero.

